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1. INTRODUCTION

Brain Computer Interface (BCI) is a very specifioltwhich bypasses traditional brain output pathsvay
peripheral nerves and muscles. The output commanedske directly from the brain instead [1]. Tihstem
designed in this manner can be used with paralpatiénts Spiral Cord Injury),even with those with no
remaining muscles controh(nyotrophic Lateral SclerogisThe system can enable to control computer or
any other device as well as to provide means ofnconication. Many brain activities can be used [2]t

the most natural way to control our surroundingpigust think the movement like we do everyday &mel
movement-related activity also offers means to setipime brain self-repairing capabilities in reHidion
applications, e.g. aftebtroke The thesis deals with offline classification oE& signals accompanying
voluntary extension and flexion movements of areinfinger in order tamprove resolutiorof the existing
BCI systems, and online classification of motor gy using developed real-time processing system in

order to find out optimatraining procedureandfeedbackepresentation to support effective user training.
2. STATE OF THE ART

Classic movement-related BCI task identifies and righthand movements [3][4]. Movements of foots and
tongue are used to extend the number of classeM{hjements of different parts of the body are oated
by different parts of the somatosensory cortex {iehHomunculus) and have a different on-scalptigpa

distribution of the EEG responses. Majority of B@tsize these differences, for example [6][7][4].

Different types ofsame body parts movemengsg. wrist movements [8][9][10], hand opening ahoking
[11][12], or movements of closely localized bodytpae.g. different finger movements [13], are Isaresed
with noninvasive BCls because the movements aré¢radted by closely localized and even overlapping
parts of the brain [14] therefore spatial distribatof the on-scalp EEG responses can hardly lieadti[8].
Our group is therefore investigating the utilizatiof temporal contex{15][13] by applying adynamic
Hidden Markov Models (HMM) classifier

There is no other work known to me performing dafasgtion of extension and flexion movements of the
same finger using noninvasive EEG recordings dpam my previous works [16][17][18] and preliminary
study of my supervisor [19]. Other studies of ouwvup dealt with individual fingers movements [18f,
distal (index finger) versus proximal (shoulder)vaments [20][21]. Classification of finger movemehgas
been done successfully so far only using invasate dcquisition methods [22][23]. It must be emjzexs
that in all cases of high-resolution studies, ifveiment classification was applied [9][8][24] it was
performed offline only and using complex and mamgighal processing. Most of high-resolution studies
deals with activity detection only [25][12][26][1P]7][28] and frequently using recording distinct vement

types in distinct blocks [8][29] which is suital@aly for rehabilitation applications.

The Feedbackis a critical part as it provides a link from th€Bto the user and enables the user to learn
controlling his brain activity. The feedback canwbeontrolled i.e. reflecting directly the subjects activity
or controlled i.e. acting in some form of predefined way [2hefe are two main alternative approaches:
process controlj.e. interactive ongoing complex interaction irder to carry the user's intent agdal

selectioni.e. carrying the user's intent in a predefiney {][2].
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3. AIMS OF THE DOCTORAL THESIS
High movement-resolution classification:Number of the recognized statasuld be increased which could
increase the information transfer rate as welbamprove rehabilitation techniques. A BCI couldqadially

facilitate restoration of paretic hand function,iethwould have substantial clinical impact [23].

* | aim to show the necessity of EB&mporal contexutilization for improving resolution of the

existing BCI systems by classifying extension aledibn movements of the same finger. For this
purpose the thesis presents:

o Comparison of results achieved using dynamic aaticstlassification approaches and various
feature extraction methods on the adopted EEG ds¢a}30][31].

* | aim to assess th&asibility of high-resolution classification in control apaltions. For this
purpose the thesis presents:

o Design of experimental recording respecting thevbecks of the database [30][31] from the
control application point of view, the performextording methods for processing the database,

and method for merging recordings separated byp@ period.

o Problems met in BCI systems relatechigh dimensionalityof the features in offline processing

which may prevent to replicate results of existingh movement-resolution studies online.
o Results achieved on the recorded database withrialysis otlassification basis

Feedback influence:The user training may be the most important faaffiecting the BCI capabilities [32].
In contrast to most BCI papers which focuses orelbgment of complex methods on the computer side |

shall use the simplest possible signal processkttpoals and focus on the influence of feedbackitsel

* | aim to show that usage of simple signal processiethods is not only sufficient to achieve high-
speed control but their usage in online processndgesired. | aim to find out how to present the
feedback and how to conduct experiments onlinauppart effective training of the users. For this
purpose, the thesis presents:

o Design and implementatiasf a universal real time EEG processing system.

o Study onfeedback influencesing left and right arm motor imagery, where was ways of

controlling the feedback are compared and guidelioeperforming experiments are presented.

4, WORKING METHODS
4.1 Used data

The EEG database recorded in study [30][31] adispted Eleven subjects took part in the experiment; each
of them performed brisk extension (extension fokldwby a return to the resting position) and flexion
(flexion followed by a return to the resting pasit) movements of the right index finger. The distitypes

of movements were recorded in distinct blocks; #m& movements were performed on acoustic trigger
(synchronous recording protocol), for more detsds [30][31].



To evaluate the performance of our developed algus under “less laboratory” conditions | recorchey

own databaseThe experimental set-up was changed from syncwusrio asynchronous; the subjects
performed the movements in time intervals of mbgnt10 sec and selected the movements based on thei
own will (i.e. self-paced and randomized record)ng® evaluate the stability of the whole systera th
recording was repeated after one year period. @berding took place at the laboratory of evokecepils

at the Medical Faculty of Charles University in Hea Kralové. Ten male subjects took part in the
experiment. Four kinds of movements were perforo@ihg the recording — brisk extensions or flexiofis

left or right index finger.

To study the feedback influence using the developeal-time processing system | performedline
experimentsat our department. In contrast to the above meaticdatabases, the data was recorded in an
unshielded room not modified for EEG recording iy avay during regular office hours. Eleven subjects
took part in the recordings while seven subjeckfpart in the study on user training. The experithevere
performed under synchronous protocol as show iarEid, the subjects performed imagery of left aghtr
arm to extend the bar or play a simple game. Birsgynchronous process control operation was tested

31)) | | +
| |
| | +

0 2 '3 4.2 '8 "10-12  Time[s]

Fixation cross Beep Arrow Feedback Rest
Figure 1: The original experimental protocol usediie synchronous experiments.

4.2 Temporal context utilization

The architecture of the used HMMs was designed Bysuapervisor [19][33][13] to capture the temporal
development of movement-related EEG: Event-Relat@®#synchronization (ERD) and Event-Related
Synchronizations (ERS). The used models havedefight, no skips architecture with four emittingtes
modeling the four significant phases of movemetateel EEG, see Figure 2. The most important adganta
of this approach is the physiological compatibilityhe selected model architecture matches therlynug
physiological process (this is actually insertioh & priori information on the EEG behavior to the
classification system [13]). The movement-relat&fEsignal is not recognized based on ERD spatépsc
distribution but on its temporal context using oolye signal source — based on differences betw&ih E
and ERS parameters between both types of movermats, details can be found in [13][34]. To show the
necessity of temporal context | compared the HMNhwlie following classifiers: Support Vector Maahén
(SVM), Learning Vector Quantization (LVQ), and dager Perceptron. In contrast to other studiestua|

these classifiers with a feature space extendedpture temporal dynamics — a Time Delay Neuralidek
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(TDNN) like approach, see Figure 3. Discrete Tinoeifier Transform (DTFT) with frequency band of 6-40
Hz (calledfull dimensionin further text), Autoregressive model (AR) coeifints, cepstrum and reflection
coefficients features were used. Also, the DTFTuess summed over the frequency dimension were used

(calledreduced dimensiom further text) to mitigate curse of the dimensility.

Movement-related EEG short time spectral magnitude time developement uV/(Hz.cm?)
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Figure 2: Hidden Markov Model architecture alongwthe EEG short time spectrum temporal develogmen

Feature computation

‘ TDNN extension
I:I >El 3= concatenated feature
vector

—

Time [sec]
0 sec
Figure 3: TDNN-like segmentation and feature eximatprocess.

4.3 Real time processing system

A modular real time processing system was desigamadl constructed in frame of obtained grant no.
SGS10/178/0HK3/2T/13 of the student grant competitSerious effort was taken in designing the syste



and brand new system was implemented to allow &asye extensions of the system. The system allows
performing experiments in both synchronous and @symous manner, present different representabbns
the feedback, control the feedback in different syand allow tailoring the feedback during the seuof

the experiment. The EEG Procesing Pipepline (EP&) build of loosely coupled blocks connected via
network packet interfaces, see Figure 4. uelularanddistributedarchitecture allows to freely distribute
parts of the BCI EPP across network to extend #ukus of the device as well as to exploit paraitali
offered by the today’s multi core systems. It isoapossible to integrate existing standalone progrhy
implementing an appropriate interface module. Ty&esn is designed agpenwhich means that all the
settings as well as definition of the communicatiootocol are stored in standalone configuratitesfiThis

gives a great flexibility to the whole EPP.

|| A— Data acquisition station

%ﬁi - | EEG’Tachinc »  Bridge

Control

: Feedback Pl Trigger

¥

E - | Feature Extraction [ / /
E E lb’ , ,"

Classification

Figure 4: Modular architecture of the EEG Procesgiipeline (EPP) .
The simplest possible methods were used: only tipoldr electrodes (placed over C3 and C4 locatjons)

and one-dimensional 8-40 Hz band power asymmeatyife as defined by (1). Balancing of the featuas w
performed as some difference in signal power betwke hemispheres is present while not performiieg t
imagery due to background EEG activity, differelecerode impedances etc.:
_R(1+b)-L(1-b)
A= R(1+b)+L(1-b) ° @
where A, is the balanced asymmetric ratig,is the power extracted from channel recorder aignt

hemispherel is the power extracted from channel recorded t¢eferhemisphere, antl is the balancing
constant. The balancing constanwas automatically computed during the experiment a
_ Avg(R)— Avg(L) o

Avg(R)+Avg(L)
The simplicity of the processing enables straightbod analysis, easy tailoring during the experithand
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allows to present the feedback without previousises devoted to training the classifier only.

Snapshot of the modules graphical user interfasbasvn in Figure 5.
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Figure 5: Snap shot of the modules GUI: a) constation: Control and Data Flow Monitoring modulds); presentation station: Arkanoid game
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and Feedback modules.

Feedback

All the feedbacks wereontinuouqupdated during the whole trial) andmulative(the classification results

was added) and 1 target to reach was gi@timistically controlledeedback was used to avoid frustration

from

meaning the bar did not extend in the o
direction but stopped or the player did not mj
in the other direction but stoppddncontrolled s
raw feedback was used to find
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most
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Figure 6.Simple gamécalled Arkanoid in th
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frequently used, see Figure 1. Anima

used to provideealistic feedback sed

Figure 6: Demonstration photo of experiment usieglistic feedback. The
feedback is reflecting the subjects imagery ohgdiand.

further text) was used to provide meaningful cdrdggplication and increase motivation of the sutsieSee

our web page [35] for demonstration videos of ladl teedback types. The game supports both synaisono

and asynchronous mode:

In synchronous mode falling ball at left or right side of the scneis presented and the feedback is
provided by movement of the player. The ball idirigl directly down and the speed is set for the
ball to reach the bottom of the screen at the érnheotrial. The protocol depicted in Figure 1 sed
but the feedback is provided by movement of thggalanstead of the bar extension.

In asynchronousnode, the ball appears at random location ondp@t the screen, and the user had



to position the player to bounce the ball; the tah bounce at the screen boundaries. If the subje
miss the ball the game is stopped for a while t@ ghe subject a rest and then another ball falls
from random location on the top of the screen. Téedback is always uncontrolled in the

asynchronous mode and no instructions are presahtedubject just plays the game.
4.3.2 Study on user training

One recording lasted up to one and half hour andisted of several 10-minutes long sessions. Té&E®EEs

were done in each of the recordings as follows:

* First session was done without feedback, this wadento give time to the subject to get used to the

task as well as be sure that the subject utilizeamnt-related activity later on.

* Second session was done using optimistically cbetrdar feedback, this session was repeated

until successful classification was achieved otlsait would be futile to continue.

* Arkanoid game was used in the third, fourth anthféession. The order of feedback control
Optimistic-Raw-Optimistic (ORO) or Raw-Optimistica® (ROR) was used. Half of the subjects
started with one sequence and the other half \Wighother sequence. This was made to assess the

usability of both types of control as well as thilience of feedback control on training the sutsiec

« Arkanoid asynchronous free game was attemptedealait session if the subject was proficient in

the previous tasks.

5. RESULTS
5.1 Adopted database

Examples of classification score time developmeithh @5 % confidence intervals are shown in Figure 7
The movement was performed at the fifth second. dlassification based on AR coefficient gives worse
results because the AR coefficients does not datestan Euclidean distance feature space, seed-ifar

The FFT features performed the best with all thasifiers.

100

T a) T T T T 100 T T T T D)

score [%]
score [%]

405 I I I L L I I I 40

Figure 7: Classification score time developmeng®8onfidence intervals: a) Movement detection ésting EEG). Comparison of cepstral (solid
line) and AR (dashed line) features. b) Movemeassification, Perceptron classifier, FFT features.

Overall results are shown in Table 1, the HMM aebiethe best results due to a priori information on
physiological behavior of EEG inserted to the HMMssifier. The TDNN-like extension capturing temgdor

dynamics helped to reach higher classificationess@rith the remaining classifiers [34].
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Classifier Ext/Flex/Rest Ext/Flex Ext/Rest
HMM 88.7 £5.84 83.0+10.7 99.9 +£00.2
Perceptron Not applicable 71.2+11.6 93.6 £ 05.3
SVM 51.7 +14.2 74.3 £08.9 95.4 +03.4
LVQ 61.4+11.6 71.3+08.8 90.3 +03.7

Table 1: Grand averages of the best classificaticores in percents reached in the experimentsgdtail see [34].

5.2 Recorded database

Real EEG short time spectral magnitude time devetors (spectrograms) for extension movement from
both recording sessions are shown in Figure 8.danesee that the responses are similar in grandges
therefore merging the sessions make sense. Thalsigrere normalized to unit power and automatic
evaluation of spectra similarity was used to remioae contact/noisy electrodes from both sessioorbehe
merge. A generative HMM classifier was selectedvatidate the merge due and assess the stability of
movement-related responses. The overall subjectement detection scores on the single recordingofias
92.4+4.9, and 80.9+6.0 on the merged recording. sSdoees achieved on the merged recordings are Jower

yet movement detection is still possible indicatihgt the activity is stable.
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Figure 8: Short time spectral magnitude EEG timealepment (spectrogram), executed finger extemsimvement, first session (left) and
second session (right). One can clearly see th&ewhERS in both recordings. Experimental subjeetektrode 36.

The results achieved on the first recording sesarersummarized in Table 2. The scores were com@ge
average over all the movement types (or movemegrgstgombinations) to provide a more precise estimat
of performanceMovement detectiowas possible with all the subject even using redutienension of
features. Classification of movement on tpposite side of the bodyas also possible with all the subjects
when utilizing the difference of features betweas hemispheres.

Task Classifier | Electrode(s) Dimension of features | Subgts with successful Score averaged over these
classification subjects [ %]

Detection LVQ difference 1 All subjects 71.347.44

Opposite side LVQ difference 1 All subjects 66.6+9.51

Same finger* LVQ one 35 1,4,and 5 67.4+5.32

Detection HMM one 1 All subjects 78.8+8.89 (82.8+7.37)

Opposite side HMM difference 1 1,4,5,6,and 9 70.02107.3+£8.73)

Table 2: Summary of selected results achieved effirst recording session. Classification scoremgsesubstitution method are shown in brackets
with the HMM classifier - the fact that both scosee close indicate that the results are not fgiesitive due to overtraning. * Best movement type
combination for each of the subject taken into act®o show that classification is possible.

Classification of extension and flexion movementtloé same finger was possible only with 3 subjects
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(whom had the strongest ERD and ERS responsedsevigilthe grand average spectrograms) and only with
the LVQ classifier; the classification is not rélie for practical use. Large individual differenaesre found
in the achieved classification scores, with sonigesais the classification scores were low howehes is
because of the fact that not anyone can use a motivity based BCI [36]. To illustrate the varikyi
between the subjects and compare the results vatk of other authors, scores varying from 56 % 308
(74 % in average) were achieved using executediteltright index finger movements in online study][
with synchronous cue based mode and the bendfiedback. The result are different as the aim vaigm
replicate the experiment [30][31] but to assesgrdormance under more realistic conditions. EXespf

classification between extension and flexion movetsigvith LVQ classifier are shown in Figure 9.

100 T T T T T T T 100

a) | b
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Figure 9: Movement classification score with 95 éfhfidence intervals, experimental subject 1, etarr36, right finger: a) reduced dimension
(FFT features summed over the frequency dimensionfiill dimension (all the FFT features).

Results of two-class (extension, flexion) classifien with the most proficient subject no. 1 weralgzed

in detail, see Figure 10. The Figure 10 shows mwdmes (horizontal lines) for all the four statdsoar
model. Blue line indicate values from each of thess validation folds, green line indicates meammated
from all the cross validation folds and red linglicate values using resubstitution method. Verticeds
indicate standard deviations. One can see thdilhil is able learn both ERD (Figure 10a, model dfi®
spectral line) and ERS (Figure 10b, model of 20spiectra line, compare with Figure 8), but the défees
in the responses between the movements were todoloalassification. The HMM classifier was able to
learn both the ERD and ERS as in [19] but now i$ werified that this is possible even with lesolalory
conditions of the experimental recording respectiogtrol application.

extension a) flexion extension b) flexion

o 2 4 6 8 10 o 2 4 6 8 10 o 2 4 6 8 10 o 2 4 6 8 10
t[s] t[s] t[s] tls]

Figure 10: Analysed HMM models. The horizontal dimedicate mean values of the four state of ourehdglue lines indicate values from each of
the cross validation folds, green lines indicat&rea averaged over all the cross validation foldd aed lines indicate values when all the data was
used for training. Subject 1, electrode 36, lefeagion (left part) and flexion (right part): apectral line 9 Hz (ERD); b) spectral line 20 Hz &R
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5.3 Study on user training and feedback influence

The feedback was proven to increase the movemkatiede changes in EEG and consecutively the
classification scores, see Figure 11. Left pathefFigure is showing feature distribution of sessiithout
feedback; the right part is showing feature disttitm from the consecutive session using optirmadiic

controlled bar feedback, randomized recording vipgdied.
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Figure 11: Distribution of feature from experime8: a) session without feedback; b) session withrogtic bar feedback.One can see that the
feedback session produces more diverse responses.

Experiments without feedback and with block recogdivere made to verify the hypothesis that block
recordings facilitates imagining/performing the raments in more consistent way, which could explain
why classification was working significantly bettesing the adopted database. The block recordilpptie
to reach higher scores. The distribution of theuleais shown in Figure 12. One can see in therEithat
the feature from resting blocks after the imagelyck for both left and right tasks shows remaining

asymmetry, while the feature from the initial regtblock shows nearly zero asymmetry.
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Figure 12: Distribution of the feature in experintem. 30 without feedback using block recording.
One can see that the resting blocks after the memebiocks show remaining asymmetry.

5.3.1 User training and feedback control

The results are shown in Table 3, one row of théeteorresponds to one recording. Two types ofescare
shown: Strict score is computed over all time intsteof all the trials together (better describimggess
control operation) while the discrete score is corag by taking each of the trials separately (bette
describing goal selection operation). Classificatising the optimistically controlled bar feedbadkieved

high classification scores (78.9 % in average @allesessions) and the classification was possi®a evhen
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subject attended the experiment for the very finsé. This is an easy task as there is nothing nmferther
focus on which can distract the attention, thus thsk is the most frequently used in BCI systéims,
example [5]. The Arkanoid game feedback increaseaisvation of the subjects but it is more distragtias
the subjects also focused on the ball. Also, aetlsea given target, the subjects frequently ghastrated
from the inability to reach the target. This cankenghe experiment fail easily. However, when frastn
was avoided high classification scores were acldiev&ng both controlled and uncontrolled feedback.
Classification scores averaged over all session&df % (controlled feedback) and 73.4 % (uncoledol

feedback) were achieved.

TYPE BAR - O Arkanoid - O Arkanoid - R Arkanoid - O Arka noid - R
SUB. STR DIS STR DIS STR DIS STR DIS STR DIS
8 75.5 78.9 70.9 75.0 73.8 81.4 75.6 727

8 71.4 78.9 61.4 58.8 76.6 94.1 70.5 84.6
8 70.1 87.5 75.9 93.6 74.5 91.7

6 64.2 75.1 71.0 83.3 64.3 70.0 67.5 75.0
6 58.5 58.8 69.2 7.7 52.2 50.0 54.2 62.5

6 69.5 75.0 63.9 68.8 70.2 69.0 77.0 87.5
5 75.5 78.9 71.0 75.0 59.8 67.4 75.5 72.8

5 65.0 72.0 52.7 52.3 73.8 82.4 67.7 75.0
5 61.3 75.0 77.1 92.3 69.6 73.3 71.2 93.8

7 66.7 76.5 55.6 52.0 55.7 61.5

7 69.7 76.4 60.2 63.6 55.1 46.6 49.2 50.0

7 69.5 85.0 60.5 81.2 65.3 79.1 64.0 62.5
4 63.0 80.0 57.4 68.7 57.3 57.5 49.6 47.0

4 58.0 67.8 64.7 72.4 715 84.6 65.9 73.7
10 75.2 80.8 63.8 73.7 74.4 90.0 75.4 88.0
10 79.8 100 71.5 82.4 71.5 80.0 4.7 94.1

10 78.8 100 82.6 93.3 93.8 93.8 82.6 93.3
11 61.0 75.0 52.9 58.8 61.0 64.7 59.4 72.7
11 75.4 85.7 70.5 73.6 75.4 88.8 62.3 73.9

Table 3: Summary of results archived in the finaltpcol. The columns show classification scoretf@ consecutive sessions. STR indicate strict
score; DIS indicate discrete score. O indicate migtic feedback (no potential in moving towardswhieng target); R indicate raw feedback. The
discrete scores higher than 75 % are marked byfaod The value of score achieved by chance i6 6.5

5.3.2 Guidelines for performing feedback experiraent

The most important thing is to provide increasinffialilty of the tasks and adjust the difficulty the

subject's immediate capabilities to avoid frustmafirom the inability to control the system.

The first sessions should be performed withoutlfiaell in order to give the subject time to get usethe
task, even if the subject was proficient in pregiogxperiments. It is helpful to provide additional
instructions on which movement to imagine and howntagine it based on classification results before

presenting the feedback.

It is helpful to instruct the subjects to train theagery before attending the experiments. Theesibjwere
instructed to image the movements on the way teeusity, and those who did it had less difficultieghe

experiments.
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The frustration can be partially avoided by codimgl the feedback: if the subject grow frustratédsi
helpful to show him or her optimistically contral®r even fake feedback (but not tell the subjeat the
feedback is fake) and switch to real feedback ateds. It is also helpful to stop the experimerd &t the

subject calm down afters sessions when the clea8dn has failed completely.

It is necessary to interact with the subjects duthe experiment to encourage then and provideiaddl
instructions on how to cope with the fact that thassification is never perfect. If the classifioatis
incorrect the subject automatically tries to cardgis or her mistakes by starting the imaginatigaia or
trying to imagine the movement harder but this justsens the situation. The classification has owed
almost immediately when the subjects were instdutbeignore the feedback and to continue with ifmage

as if nothing happened. This effect was signifiGaen with the optimistically controlled feedback.

It is equally important to keep the subject moeehtand maintain his attention by providing a tdsk the
subject can enjoy. Previous experiments when oaly feedback was used in all the sessions were not
successful also because the subjects grew tired quockly. The classification was working betterentthe
subjects enjoyed using the interface as well & #fiey deliberately tried to fool the system byfqening
the imagery in opposite to the instructions or byfgrming other mental activities and convincedrbkelves

that the system is utilizing the motor imagery.
5.3.3Asynchronous free game task

The results are summarized in Table 4. One muspacenthe achieved score to the baseline (chaneé lev
value) shown in the last column of the Table. Aslball bounce randomly and no correct game stratagy
be arbitrary decided only game score (number ohbed balls divided by number of all balls needetid¢o
caught) is presented. All the subjects were ableatch the balls falling on sides of the screert; Had
difficulties catching balls falling in the middld the screen as there is no non-control state ensistem.
The subjects therefore took strategy to wait at ©ide of the screen and switch to the imagery atitht
moment to intercept the falling ball. Also, it wamst difficult to catch ball in beginning of theals; after

the subjects bounced the ball successfully thegfrequently able hold the ball in the game.

Subject | 8 8 5 5 1 10 10 10 11 6 7 S1* S1* S1* X*

Score |46.9 56.0 47.2 54.3 37.5 34.4 53.5 47.9 50.0 47.6 44.4 57|19 3 65.62.9 30.8

Table 4: Result summary of the asynchronous gaming8essions performed in the supervised work [38ha optimistic feedback only;
asynchronous gaming was also tested in the last@es™ Value of score baseline assessed by usindomly generated signals.

Scores above the chance value were achieved litativo sessions, and the subjects improved betiveen

experiments; yet the scores are not very high. Thisot surprising as there was only one sessiothmef
game task at the end of the recording so the subgtto develop the game strategy during thiseessd

the session ended when the subject self reportatd dlin no longer continue. Good process control
performance was achieved with 5 subjects and imlprescontrol was achieved by one subject in the
supervised study [38] despite of using the mostpkmmethods. This leaves a big potential for future
improvement of the system. Clearly, it would bedexzkto perform another study devoted to the seléga
operation only and use additional no-control stdite example imagery of foot movement, or more

thresholds) to improve the results.
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6. Conclusions

An uncharted field of noninvasive high movemenshegon classification was explored in the task of
classification of EEG accompanying performed vaumtextension and flexion movements of the same
finger and the influence of feedback and user itmginvas explored in the task of left and right amator

imagery classification. Outcomes of the thesistlageefollowing:

The modular EEG toolbox [15] was extended by support for new version ofkHmulti-CPU support,
database processing and creating support, suppomeédrging EEG recordings with automatic detectibn
bad contact/noise electrodes [39], support formegaing artificial signal, model analysis, otheatige

extraction methods and classification systems [@4d, other error estimate methods.

New databaseof EEG accompanying performed voluntary extensiod flexion finger movements was
created in two recording sessions separated bymaperiod [40][41][42]. The recording was performed
less laboratory conditions compared with the comait in recording of the database [30][31] andewt#d
the aim of control rather than rehabilitation apation [43]: the performed movements were self-gaself-

selected and the subjects decided which movemerdrform just before the actual movement.

A universal real-time BCIl systemwas designed [44][45], constructed [46], and fipnglfocess control

operation was achieved using imagery of left aghtrparts of the body [35].
The contribution$n accordance with goals of the thesis are tHevahg:

Necessity of temporal contextComparison of feature extraction methods and ifieasson systems proved
the necessity of using the EEG temporal context §&7no spatial differences in the scalp EEG aesgnt.

It was verified that HMM achieves the best perfonoce due to a priori information on physiological
behavior of EEG inserted into the HMM classifiercmmparison with other classification systems [34]e
capture of temporal development was also confirmgidg the new database recorded in less laboratory

conditions respecting control application.

Feasibility of control application: | have shown that high-resolution classificatiaan ot be used to
increase the information transfer rate by extendirgnumber of states: While high classificatioousacies
were achieved on the database where distinct mavsnaere recorded in distinct blocks, classificatieas

possible only with some subjects [43] and low aacigs were achieved using the new database.

Feedback influence:l have shown that simple methods are not onlyigafit but their usage is desired. In
contract to majority of BCI papers focusing on depenent of complex methods, comparable classificati
accuracies with motor imagery of left and right am@re achieved by using the simplest possible nastho
[46] which can be more easily adapted. | have shinahthe methodology of conducting the experinterst

a critical influence. The key to achieve good perfance is to keep the subject motivated, maint&sn h
attention by providing a task that the subject eajoy [35], and most importantly by avoiding fragion
from the inability to use the interface in the eghg. This can be done by adjusting the difficudiyd
tailoring the feedback to the immediate capabditié the subject. If the subject grow frustrateis ihelpful

to show him or her controlled or even fake feedlamwi switch to real feedback afterwards.
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ANOTACE

Prace se zabyva problematikou konstrukce a vywdithrani mozek-stroj (BCI), které je zaloZzené na
klasifikaci pohybové aktivity na zakladejich projewt v EEG. Prace si klade nasledujici cile: ukazat, Ze
vyuZziti asového vyvoje je nezbytné pro zvySeni rozliSeistepcich systérin pomoci klasifikace drobnych
pohyhi, owiit, zda Ize drobné pohyby klasifikovat za podmimahravani respektujicich vyuZiti systému
pro ovladani, fipadré dosahnout zvySeni rychlostigmosu informace skrze rozhrani a stanovit optimalni

postup provaghi experiment pro trénovani uzivatélza pouziti zptné vazby.

V experimentech naipvzaté databdzi, ktera obsahuje EEG doprovazejioi extenzni a flexni pohyby
ukazovdéku, je ukdzano, Ze vyuZitfasového vyvoje je zasadni pro klasifikaci taktobdsech pohyld
ovlddanych stejnymi svaly. Neni totiz mozné powobityklého pistupu prostorové lokalizace projeZEG

na skalpu. Pro zachyce&dsového vyvoje je pouzit dynamicky klasiféké systém skrytych Markovskych
modehi (HMM), ktery dosahuje lepSich vysleike srovnani s dalSimi klasifikaimi systémy diky fedem
vloZené informaci o fyziologickém principu pohyboaitivity.

Na zéklad nedostatik prevzaté databaze, kterd byla nahravana pedylanalyzy odezev, jsou navrzeny
modifikace nahravaciho protokolu tak, aby 1épe delr@oteby BCI rozhrani. Bylo provedeno nahravani ve

dvou fazich €asovym odstupem jednoho roku a vyeta nova databaze pohybového EEG.

V experimentech na vlastni databazi je ukazanoprbgevy pohybové aktivity jsou stabilni dase, ale
klasifikace pohyb stejného prstu neni dost&teé spolehlivd pro zvySenitenosové rychlosti rozhrani.
Predkladanéh@asového vyvoje signélu lze Iépe vyuZit pro klasifikpohyli provagnych tiznou rychlosti
nebo v rehabiliténich aplikacich, kde je mozné vyuZit i pouhou deitedktivity a provadni stejnych

pohyhi v blocich a kde neni kladen takov§rdz na Usggnost klasifikace a rychlostgnosu informace.
Pro ely studie vlivu zptné vazby je navrZzen a zkonstruovan BCl systémupicos realnéntase.

V experimentech sipdstavovanymi pohyby na le¢épravé stra# téla je ukdzano, nakolik je zasadni vliv
zpétné vazby a &eni na straf uzivatele. Metodika provédi experiment ma zasadni vliv a je méalokdy
prezentovana v pracich dalSich a@ifditeré se zastuji predevsim na vyvoj stale komple$gich metod
zpracovani signalu, zatimco malo Gsili je #Bno na pdeby a vyvijejici se schopnosticastniki
experiment. Systém vyuZziva jednodusSich metod, které mijizpracovani v redlnéniase vyhodu ve
snazS8i adaptaci. Zatimcai gpracovani offline dosahuji komplexni metody fepSvysledk, pti zpracovani
v realnémcase je situacéasto obracena. Navzdory pouZziti jednoduchych mgtod dosazeny vysledky
srovnatelné s konkurénimi BCI systémy, coZz ponechava velky prostor patSidvylepSovani systému.
Provedena studie vlivu #mé vazby ukazuje, Zetipprovadni experiment v realnémcase je nezbytné
interagovat s &astnikem experimentu, podporovat ho a upravov&nap vazbu na miru. Kiem je zajistit,
aby osoba byla motivovana, udrzela pozornostiedgvSim nebyla frustrovana z neschopnosti ovladat
systém v prvnich experimentealehoz je mozné dosahnou pomoégizpisobovani zgné vazby. Pokud
dojde k frustraci uzivatele systému, jenosné ukazat mu optimisticky ovladanaii,dokonce faleSnou

zpétnou vazbu, a pak se vratit ke skinté zgtné vaze.
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