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1. INTRODUCTION

Brain Computer Interface (BCI) is a very specific tool which bypasses traditional brain output pathways –

peripheral nerves and muscles. The output commands are take directly from the brain instead [1]. The system

designed in this manner can be used with paralyzed patients (Spiral Cord Injury), even with those with no

remaining muscles control (Amyotrophic Lateral Sclerosis). The system can enable to control computer or

any other device as well as to provide means of communication. Many brain activities can be used [2], but

the most natural way to control our surrounding is to just think the movement like we do everyday and the

movement-related activity also offers means to support the brain self-repairing capabilities in rehabilitation

applications, e.g.  after  Stroke.  The thesis deals with offline classification of EEG signals accompanying

voluntary extension and flexion movements of an index finger in order to improve resolution of the existing

BCI systems, and online classification of motor imagery using developed real-time processing system in

order to find out optimal training procedure and feedback representation to support effective user training.

2. STATE OF THE ART

Classic movement-related BCI task identifies left and right hand movements [3][4]. Movements of foots and

tongue are used to extend the number of classes [5]. Movements of different parts of the body are controlled

by different parts of the somatosensory cortex (Penfield Homunculus) and have a different on-scalp spatial

distribution of the EEG responses. Majority of BCIs utilize these differences, for example [6][7][4]. 

Different types of same body parts movements, e.g. wrist movements [8][9][10], hand opening and closing

[11][12], or movements of closely localized body parts, e.g. different finger movements [13], are rarely used

with  noninvasive BCIs because the movements are controlled by closely localized and even overlapping

parts of the brain [14] therefore spatial distribution of the on-scalp EEG responses can hardly be utilized [8].

Our group is therefore investigating the utilization of  temporal context [15][13] by applying a  dynamic

Hidden Markov Models (HMM) classifier. 

There is no other work known to me performing classification of extension and flexion movements of the

same finger using noninvasive EEG recordings apart from my previous works [16][17][18] and preliminary

study of my  supervisor  [19]. Other studies of our group dealt with individual fingers movements  [13], or

distal (index finger) versus proximal (shoulder) movements [20][21]. Classification of finger movements has

been done successfully so far only using invasive data acquisition methods [22][23]. It must be emphasized,

that  in  all  cases  of  high-resolution  studies,  if  movement  classification  was  applied  [9][8][24] it  was

performed offline only and using complex and manual signal processing. Most of high-resolution studies

deals with activity detection only [25][12][26][11][27][28] and frequently using recording distinct movement

types in distinct blocks [8][29] which is suitable only for rehabilitation applications.

The Feedback is a critical part as it provides a link from the BCI to the user and enables the user to learn

controlling his brain activity. The feedback can be uncontrolled, i.e. reflecting directly the subjects activity

or  controlled, i.e. acting in some form of predefined way [2]. There are two main alternative approaches:

process control, i.e. interactive ongoing complex interaction in order to carry the user's intent and  goal

selection, i.e. carrying the user's intent in a predefined way [1][2].
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3. AIMS OF THE DOCTORAL THESIS

High movement-resolution classification: Number of the recognized states could be increased which could

increase the information transfer rate as well as to improve rehabilitation techniques. A BCI could potentially

facilitate restoration of paretic hand function, which would have substantial clinical impact [23]. 

• I aim to  show the necessity of EEG temporal context utilization for improving resolution of the

existing BCI systems by classifying extension and flexion movements of the same finger. For this

purpose the thesis presents:

◦ Comparison of results achieved using dynamic and static classification approaches and various

feature extraction methods on the adopted EEG database [30][31].

• I  aim to  assess the  feasibility of high-resolution  classification  in  control  applications. For  this

purpose the thesis presents: 

◦ Design of experimental recording respecting the drawbacks of the database  [30][31] from the

control application point of view, the performed recording, methods for processing the database,

and method for merging recordings separated by a long period. 

◦ Problems met in BCI systems related to high dimensionality of the features in offline processing

which may prevent to replicate results of existing high movement-resolution studies online. 

◦ Results achieved on the recorded database with fair analysis of classification basis.

Feedback influence: The user training may be the most important factor affecting the BCI capabilities [32].

In contrast to most BCI papers which focuses on development of complex methods on the computer side I

shall use the simplest possible signal processing methods and focus on the influence of feedback itself. 

• I aim to show that usage of simple signal processing methods is not only sufficient to achieve high-

speed control but their usage in online processing is desired. I aim to find out how to present the

feedback and how to conduct experiments online to support effective training of the users. For this

purpose, the thesis presents:

◦ Design and implementation of a universal real time EEG processing system.

◦ Study on  feedback influence using left and right arm motor imagery, where various  ways of

controlling the feedback are compared and guidelines for performing experiments are presented.

4. WORKING METHODS

4.1 Used data

The EEG database recorded in study [30][31] was adopted. Eleven subjects took part in the experiment; each

of them performed brisk extension (extension followed by a return to the resting position) and flexion

(flexion followed by a return to the resting position) movements of the right index finger. The distinct types

of movements were recorded in distinct blocks; and the movements were performed on acoustic trigger

(synchronous recording protocol), for more details see [30][31].
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To evaluate the performance of our developed algorithms under “less laboratory” conditions I recorded my

own database.  The  experimental  set-up  was  changed  from synchronous  to  asynchronous;  the  subjects

performed the movements in time intervals of more than 10 sec and selected the movements based on their

own will (i.e. self-paced  and randomized recordings). To evaluate the stability of the whole system the

recording was repeated after one year period. The recording took place at the laboratory of evoked potentials

at  the  Medical  Faculty  of  Charles  University  in  Hradec  Králové.  Ten male  subjects  took  part  in  the

experiment. Four kinds of movements were performed during the recording – brisk extensions or flexions of

left or right index finger. 

To  study  the  feedback  influence  using  the  developed real-time  processing  system I  performed  online

experiments at our department. In contrast to the above mentioned databases, the data was recorded in an

unshielded room not modified for EEG recording in any way during regular office hours. Eleven subjects

took part in the recordings while seven subject took part in the study on user training. The experiments were

performed under synchronous protocol as show in Figure 1, the subjects performed imagery of left and right

arm to extend the bar or play a simple game. Finally asynchronous process control operation was tested. 

4.2 Temporal context utilization

The architecture of the used HMMs was designed  by my supervisor  [19][33][13] to capture the temporal

development  of  movement-related  EEG:  Event-Related   Desynchronization  (ERD)  and  Event-Related

Synchronizations (ERS). The used models have left-to-right, no skips architecture with four emitting states

modeling the four significant phases of movement-related EEG, see Figure 2. The most important advantage

of this approach is the physiological compatibility – the selected model architecture matches the underlying

physiological  process  (this  is  actually  insertion  of  a  priori  information  on  the  EEG  behavior  to  the

classification system [13]). The movement-related EEG signal is not recognized based on ERD spatial scalp

distribution but on its temporal context using only one signal source – based on differences between ERD

and ERS parameters between both types of movements, more details can be found in [13][34]. To show the

necessity of temporal context I compared the HMM with the following classifiers: Support Vector Machines

(SVM), Learning Vector Quantization (LVQ), and one layer Perceptron. In contrast to other studies I used all

these classifiers with a feature space extended to capture temporal dynamics – a Time Delay Neural Network
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(TDNN) like approach, see Figure 3. Discrete Time Fourier Transform (DTFT) with frequency band of 6-40

Hz (called full dimension in further text), Autoregressive model (AR) coefficients, cepstrum and reflection

coefficients features were used. Also, the DTFT features summed over the frequency dimension were used

(called reduced dimension in further text) to mitigate curse of the dimensionality.

Figure 2: Hidden Markov  Model architecture along with the EEG short time spectrum temporal development.

Figure 3: TDNN-like segmentation and feature extraction process.

4.3 Real time processing system

A  modular  real  time  processing  system was  designed  and constructed  in  frame  of  obtained grant  no.

SGS10/178/OHK3/2T/13 of the student grant competition. Serious effort was taken in designing the system
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and brand new system was implemented to allow easy future extensions of the system. The system allows

performing experiments in both synchronous and asynchronous manner, present different representations of

the feedback, control the feedback in different ways, and allow tailoring the feedback during the course of

the experiment.  The  EEG Procesing Pipepline  (EPP) was build of loosely coupled blocks connected via

network packet interfaces, see Figure 4. The modular and distributed architecture allows to freely distribute

parts of the BCI EPP across network to extend the radius of the device as well as to  exploit parallelism

offered by the today’s multi core systems.  It is also possible to integrate existing standalone programs by

implementing an appropriate interface module.  The system is designed as  open which means that all the

settings as well as definition of the communication protocol are stored in standalone configuration files. This

gives a great flexibility to the whole EPP. 

Figure 4: Modular architecture of the EEG Processing Pipeline (EPP) .

The simplest possible methods were used: only two bipolar electrodes (placed over C3 and C4 locations),

and one-dimensional 8-40 Hz band power asymmetry feature as defined by (1). Balancing of the feature was

performed as some difference in signal power between the hemispheres is present while not performing the

imagery due to background EEG activity, different electrode impedances etc.:

Ab=
R1b−L 1−b
R1bL 1−b

, (1)

where  Ab is  the balanced asymmetric  ratio,  R is  the power  extracted from channel  recorder  over  right

hemisphere, L is the power extracted from channel recorded over left hemisphere,  and  b is the balancing

constant. The balancing constant b was automatically computed during the experiment as:

b=
AvgR−AvgL 
AvgRAvgL 

(2)

The simplicity of the processing enables straightforward analysis, easy tailoring during the experiment, and
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allows to present the feedback without previous sessions devoted to training the classifier only. 

Snapshot of the modules graphical user interface is shown in Figure 5.

Figure 5: Snap shot of the modules GUI:  a) control station: Control and Data Flow Monitoring modules; b) presentation station: Arkanoid game
and Feedback modules.

4.3.1 Feedback

All the feedbacks were continuous (updated during the whole trial) and cumulative (the classification results

was added) and 1 target to reach was given. Optimistically controlled feedback was used to avoid frustration

from incorrect  classification  results.  The  feedback was  provided  only  when  classification  was  correct,

meaning  the  bar  did  not  extend in  the  other

direction but stopped or the player did not move

in the other direction but stopped. Uncontrolled

raw feedback  was  used  to  find  limits  of

information  transfer  rate.  The  raw  feedback

directly  represents  classification  result  and  is

totally  uncontrolled.  Various  feedback

representation were tested:  The  extending bar

was used in the first  experiments  as it  is  the

most frequently used, see Figure  1. Animation

was  used  to  provide  realistic  feedback,  see

Figure 6.  Simple game (called Arkanoid in the

further text) was used to provide meaningful control application and increase motivation of the subjects. See

our web page [35] for demonstration videos of all the feedback types. The game supports both synchronous

and asynchronous mode:

• In synchronous mode, a falling ball at left or right side of the screen is presented and the feedback is

provided by movement of the player. The ball is falling directly down and the speed is set for the

ball to reach the bottom of the screen at the end of the trial. The protocol depicted in Figure 1 is used

but the feedback is provided by movement of the player instead of the bar extension.

• In asynchronous mode, the ball appears at random location on the top of the screen, and the user had
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to position the player to bounce the ball; the ball then bounce at the screen boundaries. If the subject

miss the ball the game is stopped for a while to give the subject a rest and then another ball falls

from  random  location  on  the  top  of  the  screen.  The  feedback  is  always  uncontrolled  in  the

asynchronous mode and no instructions are presented, the subject just plays the game. 

4.3.2 Study on user training 

One recording lasted up to one and half hour and consisted of several 10-minutes long sessions. The sessions

were done in each of the recordings as follows: 

• First session was done without feedback, this was made to give time to the subject to get used to the

task as well as be sure that the subject utilize movement-related activity later on. 

• Second session was done using optimistically controlled bar feedback, this session was repeated

until successful classification was achieved otherwise it would be futile to continue. 

• Arkanoid game was used in  the  third,  fourth  and fifth  session. The order  of  feedback  control

Optimistic-Raw-Optimistic (ORO) or Raw-Optimistic-Raw (ROR) was used. Half of the subjects

started with one sequence and the other half with the other sequence. This was made to assess the

usability of both types of control as well as the influence of feedback control on training the subjects.

• Arkanoid asynchronous free game was attempted at the last session if the subject was proficient in

the previous tasks. 

5. RESULTS 

5.1 Adopted database

Examples of classification score time development with 95 % confidence intervals are shown in Figure 7.

The movement was performed at the fifth second. The classification based on AR coefficient gives worse

results because the AR coefficients does not constitute an Euclidean distance feature space, see Figure 7a.

The FFT features performed the best with all the classifiers.

                     a)                      b)            

Figure 7: Classification score time development 95 % confidence intervals: a) Movement detection (vs resting EEG). Comparison of cepstral (solid
line) and AR (dashed line) features. b) Movement classification, Perceptron classifier, FFT features.

Overall results are shown in  Table 1, the HMM achieved the best results due  to a priori information on

physiological behavior of EEG inserted to the HMM classifier. The TDNN-like extension capturing temporal

dynamics helped to reach higher classification scores with the remaining classifiers [34].
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Classifier Ext/Flex/Rest Ext/Flex Ext/Rest

HMM 88.7 ± 5.84 83.0 ± 10.7 99.9 ± 00.2

Perceptron Not applicable 71.2 ± 11.6 93.6 ± 05.3

SVM 51.7 ± 14.2 74.3 ± 08.9 95.4 ± 03.4

LVQ 61.4 ± 11.6 71.3 ± 08.8 90.3 ± 03.7

Table 1: Grand averages of the best classification scores in percents reached in the experiments, for detail see [34].

5.2 Recorded database

Real EEG short time spectral magnitude time developments (spectrograms) for extension movement from

both recording sessions are shown in Figure 8. One can see that the responses are similar in grand averages,

therefore merging  the sessions make sense.  The signals  were normalized  to unit  power  and automatic

evaluation of spectra similarity was used to remove bad contact/noisy electrodes from both session before the

merge.  A generative HMM classifier  was selected to validate the merge due  and assess the stability of

movement-related responses. The overall subjects movement detection scores on the single recording was of

92.4±4.9, and 80.9±6.0 on the merged recording. The scores achieved on the merged recordings are lower,

yet movement detection is still possible indicating that the activity is stable.

Figure 8: Short time spectral magnitude EEG time development (spectrogram), executed finger extension movement, first session (left) and
second session (right). One can clearly see the marked ERS in both recordings. Experimental subject 1, electrode 36.

The results achieved on the first recording session are summarized in Table 2. The scores were computed as

average over all the movement types (or movement types combinations) to provide a more precise estimate

of performance.  Movement detection  was possible  with all  the subject even using reduced dimension of

features. Classification of movement on the opposite side of the body was also possible with all the subjects

when utilizing the difference of features between the hemispheres.

Task Classifier Electrode(s) Dimension of features Subjects with successful
classification

Score averaged over these
subjects [ %]

Detection LVQ difference 1 All subjects 71.3±7.44

Opposite side LVQ difference 1 All subjects 66.6±9.51

Same finger* LVQ one 35 1, 4, and 5 67.4±5.32

Detection HMM one 1 All subjects 78.8±8.89 (82.8±7.37)

Opposite side HMM difference 1 1, 4, 5, 6, and 9 70.0±10.2 (77.3±8.73)

Table 2: Summary of selected results achieved on the first recording session. Classification scores using resubstitution method are shown in brackets
with the HMM classifier - the fact that both scores are close indicate that the results are not false positive due to overtraning. * Best movement type
combination for each of the subject taken into account to show that classification is possible.

Classification of  extension and flexion movement of the same finger was possible only with 3 subjects
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(whom had the strongest ERD and ERS responses visible in the grand average spectrograms) and only with

the LVQ classifier; the classification is not reliable for practical use. Large individual differences were found

in the achieved classification scores, with some subjects the classification scores were low however this is

because of the fact that not anyone can use a motor activity based BCI  [36].  To illustrate the variability

between the subjects and compare the results with work of other authors, scores varying from 56 % to 95 %

(74 % in average) were achieved using executed left and right index finger movements in online study [37]

with synchronous cue based mode and the benefit of feedback. The result are different as the aim was not to

replicate the experiment [30][31] but to assess the performance under more realistic conditions. Examples of

classification between extension and flexion movements with LVQ classifier are shown in Figure 9. 

                                   a)
                            

                                   b)

Figure 9: Movement classification score with 95 % confidence intervals, experimental subject 1, electrode 36, right finger: a) reduced dimension
(FFT features summed over the frequency dimension ); b) full dimension (all the FFT features).

Results of two-class (extension, flexion) classification with the most proficient subject no. 1 were analyzed

in detail, see Figure 10. The Figure 10 shows mean values (horizontal lines) for all the four states of our

model. Blue line indicate values from each of the cross validation folds, green line indicates mean computed

from all the cross validation folds and red line indicate values using resubstitution method. Vertical lines

indicate standard deviations. One can see that the HMM is able learn both ERD (Figure 10a, model of 9 Hz

spectral line) and ERS (Figure 10b, model of 20 Hz spectra line, compare with Figure 8), but the differences

in the responses between the movements were too low for classification. The HMM classifier was able to

learn both the ERD and ERS as in [19] but now it was verified that this is possible even with less laboratory

conditions of the experimental recording respecting control application.

                           extension                   a)                 flexion                            extension                 b)                 flexion

Figure 10: Analysed HMM models. The horizontal lines indicate mean values of the four state of our model. Blue lines indicate values from each of
the cross validation folds, green lines indicate values averaged over all the cross validation folds and red lines indicate values when all the data was
used for training. Subject 1, electrode 36, left extension  (left part) and flexion (right part): a) spectral line 9 Hz (ERD); b) spectral line 20 Hz (ERS). 
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5.3 Study on user training and feedback influence

The  feedback  was  proven  to  increase  the  movement-related  changes  in  EEG  and  consecutively  the

classification scores, see Figure 11. Left part of the Figure is showing feature distribution of session without

feedback; the right part is showing feature distribution from the consecutive session using optimistically

controlled bar feedback, randomized recording was applied. 

                 
                                                              a)

               
                                             b)

Figure 11: Distribution of feature from experiment 23: a) session without feedback; b) session with optimistic bar feedback.One can see that the
feedback session produces more diverse responses.

Experiments without  feedback and with block recording were made to verify the hypothesis that  block

recordings facilitates imagining/performing the movements in more consistent way, which could explain

why classification was working significantly better using the adopted database. The block recording helped

to reach higher scores. The distribution of the feature is shown in Figure 12. One can see in the Figure that

the  feature  from resting blocks  after  the  imagery  block for  both  left  and right  tasks  shows remaining

asymmetry, while the feature from the initial resting block shows nearly zero asymmetry.

Figure 12: Distribution of the feature in experiment no. 30 without feedback using block recording.
One can see that the resting blocks after the movement blocks show remaining asymmetry. 

5.3.1 User training and feedback control

The results are shown in Table 3, one row of the table corresponds to one recording. Two types of scores are

shown: Strict score is computed over all time instants of all the trials together  (better describing process

control  operation)  while the  discrete  score  is  computed by  taking  each of  the  trials  separately (better

describing goal selection operation). Classification using the optimistically controlled bar feedback achieved

high classification scores (78.9 % in average over all sessions) and the classification was possible even when

13

Right Left Initial Rest Rest after right Rest after left

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

A
sy

m
m

et
ric

 ra
tio

 [−
]



subject attended the experiment for the very first time. This is an easy task as there is nothing more to further

focus on which can distract the  attention, thus this task is the most frequently used in BCI systems, for

example [5]. The Arkanoid game feedback increases motivation of the subjects but it is more distracting as

the subjects also focused on the ball. Also, as there is a given target, the subjects frequently grow frustrated

from the inability to reach the target. This can make the experiment fail easily. However, when frustration

was avoided high  classification scores were achieved using both controlled and uncontrolled feedback.

Classification scores averaged over all sessions of 76.2 % (controlled feedback) and 73.4 % (uncontrolled

feedback) were achieved.

TYPE BAR - O Arkanoid - O Arkanoid - R Arkanoid - O Arka noid - R

SUB. STR DIS STR DIS STR DIS STR DIS STR DIS

8 75.5 78.9 70.9 75.0 73.8 81.4 75.6 72.7

8 71.4 78.9 61.4 58.8 76.6 94.1 70.5 84.6

8 70.1 87.5 75.9 93.6 74.5 91.7

6 64.2 75.1 71.0 83.3 64.3 70.0 67.5 75.0

6 58.5 58.8 69.2 77.7 52.2 50.0 54.2 62.5

6 69.5 75.0 63.9 68.8 70.2 69.0 77.0 87.5

5 75.5 78.9 71.0 75.0 59.8 67.4 75.5 72.8

5 65.0 72.0 52.7 52.3 73.8 82.4 67.7 75.0

5 61.3 75.0 77.1 92.3 69.6 73.3 71.2 93.8

7 66.7 76.5 55.6 52.0 55.7 61.5

7 69.7 76.4 60.2 63.6 55.1 46.6 49.2 50.0

7 69.5 85.0 60.5 81.2 65.3 79.1 64.0 62.5

4 63.0 80.0 57.4 68.7 57.3 57.5 49.6 47.0

4 58.0 67.8 64.7 72.4 71.5 84.6 65.9 73.7

10 75.2 80.8 63.8 73.7 74.4 90.0 75.4 88.0

10 79.8 100 71.5 82.4 71.5 80.0 74.7 94.1

10 78.8 100 82.6 93.3 93.8 93.8 82.6 93.3

11 61.0 75.0 52.9 58.8 61.0 64.7 59.4 72.7

11 75.4 85.7 70.5 73.6 75.4 88.8 62.3 73.9

Table 3: Summary of results archived in the final protocol. The columns show classification score for the consecutive sessions. STR indicate strict
score; DIS indicate discrete score. O indicate optimistic feedback (no potential in moving towards the wrong target); R indicate raw feedback. The
discrete scores higher than 75 % are marked by boldface. The value of score achieved by chance is of 50 %.

5.3.2 Guidelines for performing feedback experiments

The most important thing is to provide increasing difficulty of the tasks and adjust the difficulty to the

subject's immediate capabilities to avoid frustration from the inability to control the system.

The first sessions should be performed without feedback in order to give the subject time to get used to the

task,  even  if  the  subject  was  proficient  in  previous  experiments.  It  is  helpful  to  provide  additional

instructions on which movement to imagine and how to imagine it based on classification results before

presenting the feedback. 

It is helpful to instruct the subjects to train the imagery before attending the experiments. The subjects were

instructed to image the movements on the way to university, and those who did it had less difficulties in the

experiments.
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The frustration can be partially avoided by controlling the feedback:  if  the subject grow frustrated it is

helpful to show him or her optimistically controlled or even fake feedback (but not tell the subject that the

feedback is fake) and switch to real feedback afterwards. It is also helpful to stop the experiment and let the

subject calm down afters sessions when the classification has failed completely.

It is necessary to interact with the subjects during the experiment to encourage then and provide additional

instructions on how to cope with the fact  that the classification is never perfect. If  the classification is

incorrect the subject automatically tries to correct his or her mistakes by starting the imagination again or

trying to imagine the movement harder but this just worsens the situation. The classification has improved

almost immediately when the subjects were instructed to ignore the feedback and to continue with imagery

as if nothing  happened. This effect was significant even with the optimistically controlled feedback. 

It is equally important to keep the subject motivated and maintain his attention by providing a task that the

subject can enjoy. Previous experiments when only bar feedback was used in all  the sessions were not

successful also because the subjects grew tired more quickly. The classification was working better when the

subjects enjoyed using the interface as well as after they deliberately tried to fool the system by performing

the imagery in opposite to the instructions or by performing other mental activities and convinced themselves

that the system is utilizing the motor imagery.

5.3.3Asynchronous free game task

The results are summarized in Table 4. One must compare the achieved score to the baseline (chance level

value) shown in the last column of the Table. As the ball bounce randomly and no correct game strategy can

be arbitrary decided only game score (number of bounced balls divided by number of all balls needed to be

caught) is presented. All the subjects were able to catch the balls falling on sides of the screen; but had

difficulties catching balls falling in the middle of the screen as there is no non-control state in the system.

The subjects therefore took strategy to wait at one side of the screen and switch to the imagery at the right

moment to intercept the falling ball. Also, it was most difficult to catch ball in beginning of the trials; after

the subjects bounced the ball successfully they were frequently able hold the ball in the game.

Subject 8 8 5 5 1 10 10 10 11 6 7 S1* S1* S1* X**

Score 46.9 56.0 47.2 54.3 37.5 34.4 53.5 47.9 50.0 47.6 44.4 57.9 65.3 62.9 30.8

Table  4:  Result  summary  of  the  asynchronous gaming. *  Sessions  performed  in  the  supervised  work  [38] using  optimistic  feedback  only;
asynchronous gaming was also tested in the last session. ** Value of score baseline assessed by using randomly generated signals.

Scores above the chance value were achieved in all but two sessions, and the subjects improved between the

experiments; yet the scores are not very high.  This is not surprising  as there was only one session of the

game task at the end of the recording so the subject had to develop the game strategy during this session and

the  session  ended  when  the  subject  self  reported  that  can  no  longer  continue.  Good  process  control

performance  was achieved with  5 subjects and  impressive control  was  achieved by one subject  in the

supervised study  [38] despite of  using  the most  simple methods. This leaves a big potential  for  future

improvement of the system. Clearly, it would be needed to perform another study devoted to the self-paced

operation  only  and  use  additional  no-control  state  (for  example  imagery  of  foot  movement,  or  more

thresholds) to improve the results. 
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6.  Conclusions

An uncharted field  of  noninvasive high movement-resolution classification was explored in the task of

classification of EEG accompanying performed voluntary extension and flexion movements of the same

finger and the influence of feedback and user training was explored in the task of left and right arm motor

imagery classification. Outcomes of the thesis are the following: 

The modular EEG toolbox [15] was extended by support for new version of HTK, multi-CPU support,

database processing and creating support, support for merging EEG recordings with automatic detection of

bad contact/noise electrodes  [39], support form generating artificial signal, model analysis, other feature

extraction methods and classification systems [34], and other error estimate methods. 

New database of EEG accompanying performed voluntary extension and flexion finger movements was

created in two recording sessions separated by a year period [40][41][42]. The recording was performed in

less laboratory conditions compared with the conditions in recording of the database [30][31] and reflected

the aim of control rather than rehabilitation application [43]: the performed movements were self-paced, self-

selected and the subjects decided which movement to perform just before the actual movement. 

A universal real-time BCI system  was designed  [44][45], constructed  [46], and finally process control

operation was achieved using imagery of left and right parts of the body [35]. 

The contributions in accordance with goals of the thesis are the following:

Necessity of temporal context: Comparison of feature extraction methods and classification systems proved

the necessity of using the EEG temporal context [17] as no spatial differences in the scalp EEG are present.

It  was verified  that  HMM achieves the best  performance due to a  priori  information on  physiological

behavior of EEG inserted into the HMM classifier in comparison with other classification systems [34]. The

capture of temporal development was also confirmed using the new database recorded in less laboratory

conditions respecting control application.

Feasibility of  control  application: I  have shown  that  high-resolution classification can not  be used to

increase the information transfer rate by extending the number of states: While high classification accuracies

were achieved on the database where distinct movements were recorded in distinct blocks, classification was

possible only with some subjects [43] and low accuracies were achieved using the new database.

Feedback influence: I have shown that simple methods are not only sufficient but their usage is desired. In

contract to majority of BCI papers focusing on development of complex methods, comparable classification

accuracies with motor imagery of left and right arm were achieved by using the simplest possible methods

[46] which can be more easily adapted. I have shown that the methodology of conducting the experiment has

a critical influence. The key to achieve good performance is to keep the subject motivated, maintain his

attention by providing a task that the subject can enjoy [35], and most importantly by avoiding frustration

from the inability to use the interface in the beginning. This can be done by adjusting the difficulty and

tailoring the feedback to the immediate capabilities of the subject. If the subject grow frustrated it is helpful

to show him or her controlled or even fake feedback and switch to real feedback afterwards. 
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ANOTACE

Práce se  zabývá  problematikou  konstrukce  a  využití  rozhraní  mozek-stroj  (BCI),  které  je  založené na

klasifikaci pohybové aktivity na základě jejích projevů v EEG. Práce si klade následující cíle:  ukázat, že

využití časového vývoje je nezbytné pro zvýšení rozlišení existujících systémů pomocí klasifikace drobných

pohybů, ověřit, zda lze drobné pohyby klasifikovat za podmínek nahrávání respektujících využití systému

pro ovládání, případně dosáhnout zvýšení rychlosti přenosu informace skrze rozhraní a stanovit optimální

postup provádění experimentů pro trénování uživatelů za použití zpětné vazby.

V experimentech na převzaté databázi, která obsahuje EEG doprovázející volní  extenzní a flexní pohyby

ukazováčku,  je  ukázáno,  že  využití  časového vývoje  je  zásadní  pro  klasifikaci  takto  drobných  pohybů

ovládaných stejnými svaly. Není totiž možné použít obvyklého přístupu prostorové lokalizace projevů EEG

na skalpu. Pro zachycení časového vývoje je použit dynamický klasifikační systém skrytých Markovských

modelů (HMM), který dosahuje lepších výsledků ve srovnání s dalšími klasifikačními systémy díky předem

vložené informaci o fyziologickém principu pohybové aktivity. 

Na základě nedostatků převzaté databáze, která byla nahrávána pro účely analýzy odezev, jsou navrženy

modifikace nahrávacího protokolu tak, aby lépe odrážel potřeby BCI rozhraní. Bylo provedeno nahrávání ve

dvou fázích s časovým odstupem jednoho roku a vytvořena nová databáze pohybového EEG.

V experimentech na vlastní  databázi  je ukázáno, že projevy pohybové aktivity jsou stabilní  v čase, ale

klasifikace  pohybů  stejného prstu  není  dostatečně  spolehlivá  pro  zvýšení  přenosové  rychlosti  rozhraní.

Předkládaného časového vývoje signálu lze lépe využít pro klasifikaci pohybů prováděných různou rychlostí

nebo v rehabilitačních  aplikacích,  kde je možné využít  i  pouhou detekci  aktivity  a  provádění  stejných

pohybů v blocích a kde není kladen takový důraz na úspěšnost klasifikace a rychlost přenosu informace. 

Pro účely studie vlivu zpětné vazby je navržen a zkonstruován BCI systém pracující v reálném čase.

V experimentech s představovanými pohyby na levé či pravé straně těla je ukázáno, nakolik je zásadní vliv

zpětné vazby a učení na straně uživatele. Metodika provádění experimentů má zásadní vliv a je málokdy

prezentována v pracích dalších autorů, které se zaměřují především na vývoj stále komplexnějších metod

zpracování  signálu,  zatímco  málo  úsilí  je  zaměřeno  na  potřeby  a  vyvíjející  se  schopnosti  účastníků

experimentů.  Systém využívá jednodušších metod, které mají při  zpracování v reálném čase výhodu ve

snazší adaptaci. Zatímco při zpracování offline dosahují komplexní metody lepších výsledků, při zpracování

v reálném čase je situace často obrácená. Navzdory použití jednoduchých metod jsou dosaženy výsledky

srovnatelné s konkurenčními BCI systémy,  což ponechává velký prostor  pro další vylepšování systému.

Provedená studie vlivu zpětné vazby ukazuje, že při  provádění experimentů  v reálném čase je nezbytné

interagovat s účastníkem experimentu, podporovat ho a upravovat zpětnou vazbu na míru. Klíčem je zajistit,

aby  osoba byla  motivována,  udržela  pozornost  a  především nebyla  frustrována  z  neschopnosti  ovládat

systém v prvních experimentech, čehož je možné dosáhnou pomocí přizpůsobování zpětné vazby. Pokud

dojde k frustraci  uživatele systému, je přínosné ukázat  mu optimisticky ovládanou, či  dokonce falešnou

zpětnou vazbu, a pak se vrátit ke skutečné zpětné vazbě.

Klí čová slova:  BCI, EEG, ERS, ERD, HMM, FEEDBACK
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